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MuNeRF: Robust Makeup Transfer in Neural
Radiance Fields
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Abstract—There has been a high demand for facial makeup
transfer tools in fashion e-commerce and virtual avatar gen-
eration. Most of the existing makeup transfer methods are
based on the generative adversarial networks. Despite their
success in makeup transfer for a single image, they struggle
to maintain the consistency of makeup under different poses
and expressions of the same person. In this paper, we propose
a robust makeup transfer method which consistently transfers
the makeup style of a reference image to facial images in any
poses and expressions. Our method introduces the implicit 3D
representation, neural radiance fields (NeRFs), to ensure the
geometric and appearance consistency. It has two separate stages,
including one basic NeRF module to reconstruct the geometry
from the input facial image sequence, and a makeup module to
learn how to transfer the reference makeup style consistently. We
propose a novel hybrid makeup loss which is specially designed
based on the makeup characteristics to supervise the training of
the makeup module. The proposed loss significantly improves the
visual quality and faithfulness of the makeup transfer effects. To
better align the distribution between the transferred makeup and
the reference makeup, a patch-based discriminator that works
in the pose-independent UV texture space is proposed to provide
more accurate control of the synthesized makeup. Extensive
experiments and a user study demonstrate the superiority of
our network for a variety of different makeup styles.

Index Terms—Makeup Transfer, Neural Radiance Field, Patch
GAN.

I. INTRODUCTION

With the explosive development of the metaverse and digital
human, there has been a high demand for innovative solutions
for facial image generation. Deep neural networks have sig-
nificantly advanced face synthesis and enabled intelligent face
editing tools [1], [2]. Recently, facial makeup transfer has
attracted a good amount of research interest, which has broad
application prospects, such as virtual makeup try-on in fashion
e-commerce and VR/AR games. Existing methods [3]–[5]
have enabled users to see themselves in different makeup
styles, even when there are certain differences between the
user’s photo and the reference makeup image. Nevertheless,
they mainly focus on 2D makeup transfer without resorting
to complex facial geometry modeling, while 3D-consistent
makeup transfer with different poses and expressions provides
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Fig. 1. Our method is able to transfer makeup styles (left column) to facial
images of different poses and expressions while preserving the geometry and
appearance consistency.

greater value to users. The users of virtual makeup applications
usually need to view the generated face under different poses
and expressions continuously. For example, when virtually
trying a new cosmetic product, users often rotate their heads
and make facial movements to check their look. Therefore, a
robust makeup transfer method capable of preserving visual
consistency across different 3D facial poses and movements
would greatly increase the accessibility and applications of
virtual makeup technology.

There remain two challenges for transferring makeup with
arbitrary poses and expressions. First, most 2D-based ap-
proaches struggle to handle dramatically different poses and
expressions since they usually align facial features on frontal
faces or limit the head rotation angle in the data-processing
stage. Although some works such as [4] can cope with
large pose and expression differences, their results on facial
videos suffer from asymmetrical makeup flaws and flickering.
Second, the convolution-based approaches cannot preserve
the consistency of makeup details. The reason is that the
convolution operation tends to fuse pixels in the receptive field
when learning and interpreting features, leading to consid-
erable appearance differences between different views when
transferring style features.

In this work, we explore the challenges of accurately and
consistently transferring the makeup style of a single reference
image to facial images in any pose and expression. To achieve
this goal, we need a 3D-aware representation that can robustly
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disentangle the inherited facial geometry and appearance infor-
mation. Recently, Neural Radiance Fields (NeRFs) have shown
competence in representing 3D face information implicitly
for view synthesis with geometry consistency [6], [7]. We
thus build a novel framework based on dynamic NeRFs for
transferring the makeup style from a reference image to the
facial images of the same person. Our method has two-stages.
In the first stage, a dynamic NeRF is trained to reconstruct a
face model from the given video. The trained density module
is then reused in the next stage as the representation of
the inherent 3D geometry of the target face. In the second
stage, we cascade the fixed density module and a makeup
module to render facial images with makeups. It is the key
for maintaining the consistency of the facial geometry in the
final results. We also propose a novel hybrid makeup loss,
which considers the characteristics of the makeup applied on
different facial parts, to improve the makeup details in the
generated images. To further reduce the effect of confounding
factors caused by such as poses, we employ a patch-based
discriminator working on UV maps to enhance the appearance
consistency between the generated image with any pose and
expression and the makeup reference.

The contributions of this paper are:
• We propose a novel NeRF-based makeup transfer method,

MuNeRF, which is capable of automatically applying
reference makeup on facial images under different poses
and expressions consistently.

• We propose a novel hybrid makeup loss which considers
the makeup characteristics of different facial parts. It
works well for both light and extreme makeup styles.

• We introduce a patch-based discriminator working on
UV maps which aligns the distribution between the
transferred makeup and the reference makeup to improve
the consistency across different poses and expressions.

• Extensive experiments and a user study are conducted
to demonstrate the superiority of our method over other
state-of-the-art methods in terms of visual authenticity
and the consistency across the generated facial images.

II. RELATED WORKS

A. 2D Facial Makeup Transfer

Facial makeup is an interesting and popular topic in com-
puter graphics and vision. Compared with style transfer,
makeup transfer demands more accuracy of color distribution
and more delicate details. Given a face image with a target
makeup style, makeup transfer aims at perfectly imitating the
style on this face image. Before the introduction of neural
network, makeup transfer mainly relies on image warping
and blending. Guo et al. [8] propose to decompose the face
image and the reference makeup image into three layers:
face structure layer, skin detail layer, and color layer. Then
they mix the layers of the two images to achieve makeup
transfer. Since CycleGAN [9] proposes a classical solution
to unpaired image-to-image translation, it is widely used as
a base structure in the makeup transfer task. For example,
PairedCycleGAN [10] incorporates a makeup transfer network
with a makeup removal network to achieve cycle-consistent

training. To better transfer color distribution, BeautyGAN [3]
introduces a local histogram matching, which achieves realistic
frontal makeup results with light makeup style. LADN [11]
is the first to handle dramatic makeup styles with multiple
overlapping local discriminators. However, it may generate
noticeable artifacts. Thao et al. [5] decompose extreme makeup
and view it as a combination of colors and patterns. The
method extends warped faces in UV space to transfer color
and learns masks for patterns. PSGAN [12] focuses on dealing
with new poses and expressions varying from source face
with learned attentive matrices. SOGAN [13] introduced a
flip attention module that utilizes facial symmetry to overcome
issues with shadows and occlusions. Sun et al. [14] decompose
the face image into four independent parts, which enables
local control of the transferred makeup. [15] is the first to
introduce Transformer [16] into this task to learn better shape
transformation. The Glow model [17] is also used in makeup
transfer [18]. To better align corresponding facial parts of
the source and target faces, [19] proposes a novel symmetric
semantic-aware network, working well on light makeup styles
but failing on extreme ones. It also extends to video makeup
transfer. However, it suffers from the inconsistency of makeup
transfer details and lighting effects.

B. Neural Radiance Fields

Recently, neural rendering [20], especially Neural Radiance
Field (NeRF) [21] has received substantial attention. NeRF
implicitly encodes the geometry and appearance of a scene
using a multi-layer perceptron (MLP) network. Many works
have presented diverse methods to improve NeRF by providing
better synthesis effects [22], [23] and faster training or infer-
ence speed [24]–[27], or adapt it to dynamic scenes [28], [29]
and re-lighting tasks [30], performing geometry or appearance
editing [31]–[33] etc. Incorporated with the prior models [34],
[35], dynamic human face and body modeled by NeRF [6],
[7], [36], [37] have been fully studied. However, the deforma-
tion field formulated by MLP-based networks cannot handle
topological changes such as expressions. HyperNeRF [38]
proposes to use an additional MLP to model different topo-
logical states of dynamic scenes as different hyper-planes in
high-dimensional space. To cope with the diversity of facial
image datasets, 2D image generation networks [2] are further
extended to the generation of 3D-aware face image [39], [40].
The implicit 3D face can be edited by modifying the pose or
expression parameters [41], the attribute values specified by
the user [42], or semantic masks [43]–[45]. Some works [46],
[47] also explore how to generate dynamic face videos from
speech. HeadNeRF [48] proposes a parameterized human head
model based on NeRF, which can generate realistic face im-
ages under different views with various parameters, including
identity, expression, appearance and pose. NeP [49] decouples
the geometry and appearance of the face and enables facial
appearance editing by operating on the UV map. Although
they can also apply makeup edits, other professional image
editing software and some tedious labouring work are needed
to generate a desirable makeup style. Our method is com-
plementary to existing NeRF-based facial image generation
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Fig. 2. Our framework. We employ a two-stage scheme. Firstly, we reconstruct the 3D NeRF representation of the input monocular video. Subsequently, we
transfer the reference makeup style to different facial poses and expressions through a dedicated makeup module. A VGG network is introduced to extract
global convolutional features which are fed into the upsampling module in the second stage to maintain 3D consistency of the makeup transfer results. The
patch-based discriminator working on the facial UV texture maps is illustrated on the right. ’BG’ denotes the background image and γ is a per-frame trainable
vector used to eliminate estimation errors.

techniques, by providing an automated approach of applying
makeup styles on the predicted appearances.

III. METHOD

Our goal is to generate facial makeup images consistently
with given pose and expression parameters. Our network is
built upon a recent dynamic facial NeRF model, NeRFace [7].
Given an input face video, we first train a dynamic NeRF
model with facial poses and expressions to obtain the inherent
face geometry represented in the density module (Sec. III-A).
We then cascade the fixed density module and a MLP-
based makeup module to learn how to apply the makeup
features extracted from the reference image on the inherent
face geometry (Sec. III-B). To imitate more detailed makeup
features, we propose a patch-based discriminator on UV maps
to better control the synthesized regions for important facial
parts. What’s more, a hybrid makeup loss is specially designed
based on makeup characteristics. It works with other losses
to supervise the training of the makeup module (Sec. III-C).
Our framework preserves the consistency among the makeup
transfer results of all the input frames and is able to generate
new makeup images for unseen poses and expressions.

A. NeRF and Dynamic Face Reconstruction
A Neural Radiance Field (NeRF) represents a 3D scene

as a continuous volumetric space and uses a multi-layer
perceptron (MLP) to model both its geometry and appearance.
This representation is encapsulated in a function F , which
predicts color c and density σ based on the 3D position
p = (x, y, z) and view direction d = (ϕ, θ) as inputs.
To capture high-frequency scene details effectively, NeRF
incorporates positional encoding ζ(·), which transforms each
input (p,d) into a higher-dimensional space. The function F
is expressed as follows:

FΘ : (ζ(p), ζ(d)) → (c, σ), (1)

where Θ represents the parameters of the network. Since
we need to model dynamic faces from the input monocular

video and generate different poses and expressions, we adopt
the dynamic NeRF face reconstruction work, NeRFace [7]. It
extends NeRF to represent 3D faces with dynamic expressions
with an extra input δ describing facial expressions and can be
expressed as:

FΘ : (ζ(p), ζ(d), δ, γ) → (c, σ), (2)

where γ is a learnable latent vector to compensate for errors
resulting from parameter estimation. Specifically, given the
input face video Y comprising N frames yi, we extract the
camera intrinsic parameters, pose parameters Pi, and facial
expression parameters δi for each frame using preprocessing
tools provided by [50]. Utilizing the estimated pose parameters
and camera intrinsics, the dynamic NeRF model maps the ray
corresponding to each pixel into camera space and samples a
specified number of points along the ray. Then the position p
of a sampled point, the view direction d of the corresponding
ray, and the estimated facial expression parameter δ are fed
into two multi-layer perceptrons (MLPs): the density predic-
tion module F d

Θ and the color prediction module F c
Θ. These

modules predict the density value σ and the color value c
of the sampled point, respectively. Additionally, a per-frame
trainable code γ is introduced into the network to compensate
for estimation errors. Finally, the density and color predictions
are aggregated using volume rendering [51] to compute the
pixel color corresponding to the ray r(t) = c+ td:

C(r; Θ, P, δ, γ) :

∫ zfar

znear

F d
Θ(r(t)) · F c

Θ(r(t),d) · T (t)dt, (3)

Here, znear and zfar denote the closest and farthest depths,
respectively. T (t) represents the accumulated transmittance
along the ray from znear to t. Notably, our approach incorpo-
rates a two-stage volume rendering scheme inspired by [21],
which involves the concurrent training of a coarse NeRF and a
fine NeRF. Utilizing the dynamic NeRF model, we can derive
the corresponding reconstructed frame yYi .
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Our approach is fundamentally grounded in the dynamic
NeRF representation and leverages the 4D field to enable
consistent makeup transfer across various facial poses and
expressions. Our network architecture comprises two distinct
components, each trained in separate stages. The complete
network structure is depicted in Fig. 2. The first part is the
dynamic 3D face reconstruction from a monocular face video.
Then, we stabilize the density module in NeRF and train
a dedicated makeup module to achieve consistent makeup
effects.

B. Consistent Makeup Transfer

After the first stage of training is completed, we obtain
an implicit reconstruction of face geometry. Then the goal
of the second stage is to faithfully transfer the makeup
distribution of the reference makeup image X to the dynamic
face reconstructed in the first stage. The second part of the
network reuses the density module F d

Θ trained in the first stage
and employs a new color module, Fm

Θ , which functions as the
makeup module, to apply the reference makeup style. Unlike
the color module in the first stage that predicts a 3-channel
color for each pixel, the makeup module predicts a feature
vector for each pixel and a low-resolution feature map by
volume rendering instead, the same as [52], [53]. The feature
map will be decoded into the final makeup image afterwards.
This strategy reduces network training overhead, allowing us
to generate the entire image during training which is conve-
nient for the subsequent patch-based discrimination and other
supervisions. We use an upsampling module for decoding
the feature map, which consists of several downsampling
layers, ResNet blocks and upsampling layers. Although the
fixed density module can maintain the geometry consistency
for the image generation with different poses and expressions,
the convolutional operations after the makeup module may in-
troduce appearance differences that break the 3D consistency.
To alleviate this issue, we add the global convolutional features
(VGG features) of the pre-makeup image when translating the
feature map to the final makeup image. The global features
are fused during deconvolution and upsampling with the
corresponding dimensions, thus obtaining a higher resolution
and a better preservation of geometry. During training, the pre-
makeup image comes from the input video, and for the novel
pose or expression to synthesize, it comes from the synthetic
result of the dynamic NeRF model from the first stage. As
shown later in our experiments, the consistency of the makeup
transfer results is comparable to that of the dynamic NeRF
trained in the first stage.

To supervise the training of our makeup module, we create
a pseudo ground truth yWi for each source image yi with the
target makeup distribution. We adopt the creation method in
LADN [11], where the pseudo ground truth yWi is generated
by image warping based on landmark-based face matching
and blending the face of the reference image X to the source
image yi by Poisson image editing [54] within OpenCV.
We fix the density module trained in the first stage during
the second training stage. This training scheme ensures the
accuracy of reconstructed face geometry in different poses

and expressions. It also speeds up the training process and
reduces the GPU memory cost for training. The training
process in the second stage is supervised by our novel hybrid
makeup loss and a dense-landmark color loss that measure
the differences between the transfer result and the pseudo
ground truth, which are introduced in Sec. III-C. It should
be noted that the pseudo ground truth is not perfect and the
density module provides correspondence across different views
to help eliminate the artifacts through the complementary
information from different views. For better supervision of
makeup consistency, we also build a patch-based discriminator
working on facial UV texture maps to lift the makeup quality
on important facial parts and ensure no confounding factors
are included. The patch-based discriminator is shown on the
right side of Fig. 2. After training the makeup module to
convergence, the final makeup result yXi will be obtained.

Patch-based Discriminator on UV maps. The pseudo
ground truth made by face morphing has some artifacts
which may affect the makeup transfer results of the makeup
module. To mitigate the effect, we further introduce a patch-
based discriminator to correct the makeup distribution er-
ror of the pseudo ground truth. The original patch-based
discriminator [9] directly judges whether sampled patches
satisfy generative objectives. However, the underlying geom-
etry information of the patches from the reference and the
synthesized image could be considerably different, causing the
ineffectiveness of the discriminator on identifying patches with
properly transferred makeup features. Therefore, we choose
to convert facial images to the UV-map domain to remove
the confounding factors, such as poses and expressions, for
assessing the synthesized makeup effects. We use PRNet [55]
to map each face pixel to a fixed semantic facial point on
the UV plane. We then get the UV textures using a texture
mapping method [55] to represent the appearance information
that is invariant to poses and expressions. The corresponding
UV texture map of the synthesized image yXi and the reference
makeup image X are denoted as yXi uv and Xuv , respectively.
Moreover, instead of randomly sampling patches from UV
maps, we select patches from fixed facial landmark positions
on the UV map, such as lips, nose, eyes, and eyebrows. This
encourages the discriminator to focus only on those facial
parts related to makeup. Although the UV map also contains
identity information that could be affected after modification,
our fixed density module and the global feature of the original
facial image can help to keep the geometry consistency in the
generated images. Thus, the discriminator will mainly take
effect on the makeup styles at patch-level. We also presented
the ablation experiments of conducting discrimination on the
facial image domain in Sec. IV-D. With the help of patch-
based discriminator on UV maps, we can avoid obvious facial
defects caused by mixing color distributions and provide more
accurate control of the transferred makeup style.

C. Loss Functions

In this section, we introduce the losses to supervise our two-
stage training. The first stage reconstructs the dynamic face
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model before makeup from the source video. The dynamic
NeRF FΘ is trained by the color reconstruction loss:

LRGB =
N∑
i=1

∑
j∈pixels

∥C(rj ; Θ, Pi, δi, γi)− Ii[j]∥2, (4)

where Ii[j] is the ground truth color of the j-th pixel on the
i-th input frame, Θ is the optimized weights.

In the second stage, we reuse the density module and keep
it fixed. Then we replace the color module with a makeup
module and train it from scratch. Due to the possible artifacts
in the pseudo ground truth and the uneven distribution of
the significant makeup-related features, the original color loss
LRGB , which treats all pixels equally, is not suitable for the
second stage. Therefore, we propose a novel hybrid makeup
loss to supervise the color prediction. The aforementioned
patch-based discriminator is also introduced to align makeup
style among generated frames. We also introduce a dense-
landmark color loss to refine the details in makeup distribution.
Hybrid Makeup Loss. Our motivation for designing the
hybrid makeup loss is our observation that certain aspects
of the makeup effect occupy relatively small areas, such
as the makeup around the eyes. These intricate details can
be overlooked during optimization. Therefore, we design the
hybrid makeup loss to specify varying weights to different
makeup regions. This approach strengthens the constraints on
detailed regions, ensuring the fidelity of the final makeup
effect. The hybrid makeup loss consists of two parts. First,
we crop K (K = 7) patches, containing key facial parts from
both the pseudo ground truth yWi and the generated result
yXi . We find the corresponding patch in the source image for a
patch in the pseudo ground truth using histogram matching [3].
Then a L2 loss is calculated between the matched patches and
the generated result patches. Compared to the static reference
image X , the pseudo ground truth has the same expression and
pose as the original frame, making the makeup loss calculation
easier and more accurate. To further enhance the fine-grained
makeup details on the eye and lip region, we add an additional
loss for some extreme eye shadows and lip makeups that
directly calculates the L1 loss on the eye and lip patch pairs.
Second, we obtain the skin region using a facial mask [56] and
crop M skin patches surrounding the key facial parts on yWi
and yXi . Then the L2 loss of each skin patch pair is added to
the hybrid makeup loss with different weights. Specially, the
patches around lips and eyes have twice the weights of other
skin patches. In all, the hybrid makeup loss can be formulated
as (for brevity, we omit the notation i):

Lhybrid = Lkey ∗ λkey + Lskin ∗ λskin (5)

where,

Lkey =
K∑

k=1

∥H(pWk , pk), p
X
k ∥2 + ∥pWeye,lip, pXeye,lip∥1

Lskin =
M∑

m=1

∥sWm , sXm∥2 ∗ λpart
m

where pWk , pk and pXk represent each key part patches of
the pseudo ground truth yW , non-makeup source image y,

and our synthesized result yX . H represents the histogram
mapping. pWeye,lip and pXeye,lip represent the patches on the
eye and lip regions of yW and yX . sWm and sXm denote each
skin part of yW and yX , respectively. λkey is the weight for
key feature parts loss, λskin is for skin parts loss and λpart

m

represents the individual weight for each skin part according
to the makeup characteristics, where the weights for the skin
patches surrounding the key facial parts should be higher to
obtain better effects.
PatchGAN Loss. We use a patch-based discriminator on UV
maps, which involves a GAN loss LGAN formulated as:

LGAN = max
G

min
D

(Ep∼Py
uv
[log(D(p))]

+ Ep̂∼PX
uv
[log(1−D(p̂))]),

(6)

where G represents the generator, that is, our makeup NeRF
that generates the makeup images, including the density mod-
ule and the makeup module. D represents our patch-based
discriminator on UV maps. P y

uv is the set of image patches in
yXi uv and PX

uv is the set of image patches in Xuv .
Dense-landmark Color Loss. We use [55] to reconstruct an
explicit 3D mesh with vertex color from the face image, where
the mesh vertices are viewed as dense landmarks. Unlike [4]
that only considers the nose region, we consider the dense
landmarks from more appointed facial regions such as lip,
eye, nose and cheek. Then the L2 loss between the colors
of dense landmarks obtained from yWi and yXi is calculated
point-by-point:

Ldense =
D∑

d=1

∥Dd(y
X
i )−Dd(y

W
i ))∥2. (7)

Here, Dd denotes the function to obtain the d-th dense face
landmark color from the image and D represents the number
of dense landmarks we select.

Finally, the total loss function of the second stage is:

Ltotal = λhybridLhybrid + λGANLGAN + λdenseLdense, (8)

where λhybrid, λGAN and λdense are the adjusting weights.
Please refer to our supplementary file for more training and

implementation details of our method.

IV. RESULTS AND EXPERIMENTS

A. Comparisons with Other Methods

Some existing NeRF-based methods [57], [58] are able to
apply style transfer on facial images. However, they pay more
attention to the transfer of overall style and fail to generate
accurate details, which can not satisfy the high demand for
details in makeup transfer task. NeP [49] provides an inter-
active method to apply makeup on face images. But it needs
tedious manual editing work on UV maps, which requires a
high-level professional skills to achieve satisfactory results.
Therefore, we compare our method with the following state-
of-the-art automated 2D makeup transfer methods, including
BeautyGAN [3], PSGAN [12], SCGAN [59], SSAT [19],
CPM [5] and LADN [11]. Based on the open-source models
provided by these methods, we fine-tune the models on our
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Fig. 3. We compare the makeup transfer effect on a single frame with six existing methods. It can be seen that our results have more reasonable color
distributions while maintaining the geometric structure of the source face.

Fig. 4. Comparisons on video makeup transfer with PSGAN [12] and SSAT [19]

training set for fairness. We also show more results in the
supplementary file and dynamic results in the video.

We first compare our method with other makeup transfer
methods in terms of makeup transfer quality on a single frame.
We show the comparison results in Fig. 3. We can see that our
results have more accurate and reasonable color distributions
on facial features while maintaining the geometric structure
of the source face. In contrast, PSGAN, SCGAN, and SSAT
fail to transfer accurate makeup details in the eye region, as
shown in the first row. The results of CPM have visible pasting
artifacts when the skin colors are different between the source
and reference faces.

We then show our great advantages of keeping consistency
when transfer makeup to facial videos. It should be noted that
most of the existing methods only consider makeup transfer
on a single input image. Even though a few researches [12],
[19] claim that they could perform continuous makeup transfer
for facial videos, we found the consistency achieved by those
methods is poor, especially under some exaggerated poses
and expressions. We compare our method with PSGAN [12]
and SSAT [19] on the video makeup transfer task, since they
claim that their method can handle such cases. The results are
shown in Fig. 4. Notably, the makeup effects of our results
are more visually pleasant and consistent, while we can see
obvious visual defects in the results of PSGAN and SSAT.
This demonstrates that the consistency of our makeup transfer
under different poses and expressions is superior to the existing
methods. We also show the comparisons with pseudo ground
truth in the supplementary file.

B. More Makeup Transfer Results

Partial Makeup Transfer. Our method can be applied to
perform partial makeup transfer and multi-reference makeup
transfer since our hybrid makeup loss and discriminator are
both patch-based. We first generate pseudo ground truth for
each makeup reference and use the facial mask to select
the desired makeup region from these pseudo ground truths.
We then fuse these desired regions to form the entire target
pseudo ground truth image to train our model. Fig. 5 provides
examples where we transfer makeup for single facial parts and
their combinations.

Fig. 5. Partial makeup transfer results. We show the transferred makeup on
the lips, eyes, and skin, and the combination of the three.

De-makeup. Our method can also utilize makeup transfer to
achieve de-makeup effects. For a face video with an arbitrary
makeup, we select an arbitrary face image without makeup and
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Video 1 Video 2 Video 3 Video 4 Video 5 Average
w/o conv. 0.862 0.858 0.852 0.876 0.873 0.8642
Ours 0.821 0.854 0.848 0.867 0.826 0.8432

TABLE I
THE SIMILARITIES BETWEEN THE EXPRESSION VECTORS OF THE

RECONSTRUCTED AND THE ORIGINAL FRAMES FOR CONSISTENCY
EVALUATION.

use our method to transfer this unpasteurized effect to the 3D
face with makeup. The results are shown in Fig. 6. It can be
seen that our method can also achieve a consistent de-makeup
effect for makeup faces.

Pose and Expression Interpolation. Since our network
takes poses and expressions as explicit controls of dynamic
neural radiance fields, interpolation between different poses
and expressions can be achieved. Our method is good at
transferring makeup style to unseen poses and expressions
while keeping makeup distribution consistent across all the
frames. Some results are shown in Fig. 7.

More Cases. We show more makeup transfer examples in
Fig. 8 and the supplementary.

C. Evaluations

Consistency. Although our makeup module has convolution
operations, our method still guarantees strong 3D consistency
by incorporating the features of pre-makeup images during
upsampling and employing a PatchGAN working on the UV
map for supervision. Because we use NeRFace as the 3D
representation, different views are actually different facial
poses. In order to quantitatively evaluate the consistency under
different poses, inspired by EG3D [40], we compare the
3DMM [34] expression vectors extracted from the original
video frames, the corresponding reconstructed images using
our model without convolution operations (w/o conv.) and our
full model. We then calculate the average cosine similarity
between the expression vectors of the ‘w/o conv.’ model or
the full model and the original frames. It can be seen from
Tab. I that these two similarities are comparable, indicating
the convolution operations has a nearly neglectable impact on
the 3D consistency.
Generalization. In order to illustrate the generalizability of
our method, we manually split the images into two groups
according to the head position and pose. We use one group
as our training set and the other as the test set to see whether
our model can cope with large pose differences. In Fig. 9, we
show the makeup transfer results of some representative test
frames in the bottom two rows, and the corresponding most
similar training images in the first row. It can be seen that our
method exhibits good generalizability on unseen images with
obvious differences from the training set.
Time Statistics. We present the time statistics for each stage
in Table II. Due to the limitations of the NeRF represen-
tation, our method requires training a NeRF network for
each individual and also requires some time to train makeup
modules for different reference makeups. While other methods
can be directly applied to novel persons without the need
for retraining, it’s essential to emphasize that there already
exist acceleration technologies capable of expediting NeRF

training and rendering, such as iNGP [27] and NeRFAcc [60].
On a practical note, each user can initially establish their
facial NeRF representation, which is a one-time process.
Subsequent makeup transfers from different makeup styles
won’t consume excessive time. We’ve also compared the
inference time required to generate a makeup transfer image
with other methods, revealing that our method falls within a
moderate range in terms of inference time. Incorporating NeRF
acceleration technology is expected to further reduce this time,
potentially enabling real-time performance.

D. Ablation Study

We demonstrate the effect of the components of our method
on the performance of the makeup transfer with several
ablation experiments.
Effectiveness of Losses. To show the effectiveness of the
losses used in the second training stage, we test several vari-
ants of the training scheme. In Fig. 10(a), we show the result
of the model trained with only the RGB color loss between
the pseudo ground truth and the generated image. Because the
RGB loss treats all pixels equally, it fails to generate some
important details, such as the lip region in the first row, and
the eyebrow region in the bottom example. The results in (b)
show that our proposed hybrid makeup loss can provide better-
aligned makeup features for key facial parts. However, it uses
histogram matching to generate target color distribution for
lips and nose, where large deformation may happen, so it may
still miss some detailed makeup features. By inspecting (b) and
(c), we can find that the patch discriminator and the PatchGAN
loss enable a direct comparison between the generated results
and the reference makeup image regardless of their geometry
difference, which can further help capture the makeup details.
Compared with the results in (c), the results of our full model
(d) show that the dense landmark loss can further improve the
details by providing more accurate colors (the top row) and
sharpening the makeup (the bottom row).
Patch-based Discriminator. The effectiveness of our patch-
based discriminator working on the UV map has been shown
in the aforementioned experiments. In addition to working
on the UV map, we also test other alternatives of applying
discrimination. We train two other discriminators for directly
distinguishing the patch pairs from the final output facial
image and the corresponding pesudo ground truth or the orig-
inal reference makeup image. Fig. 11 shows the comparison
results. It can be seen that applying the adversarial loss on
the pose-invariant UV texture maps can provide better control
of the generated makeup texture, saving the training process
from huge and non-convergence network parameters of con-
tinuously changing input variables. Using the patches on the
pseudo ground truth image and the original reference image
cannot guide the network effectively due to the significant
different poses and expressions.

E. Comparison with Warping

Our method uses a warped makeup face as the pseudo
ground truth for color supervision, offering color distribution
information to guide makeup transfer. This supervision manner
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Fig. 6. De-makeup results. Our method can also achieve a consistent de-make effect for makeup faces.

Fig. 7. Makeup transfer results during pose and expression interpolation.

BeautyGAN PSGAN SSAT SCGAN CPM Ours - 1st stage Ours - 2nd stage Ours - inference
Time 5.25s 1.96s 0.30s 0.57s 9.63s ∼4h ∼1h 1.75s

TABLE II
WE SHOW THE TRAINING TIME OF EACH STAGE AND ALSO COMPARE THE INFERENCE TIME WITH OTHER METHODS. IT CAN BE SEEN THAT OUR METHOD

IS AT A MODERATE LEVEL IN INFERENCE TIME.

is also used in some other face makeup transfer works [11],
[19]. However, the pseudo ground truth images may exhibit
geometric distortions and visual defects, as depicted in Fig. 12
(b). By utilizing NeRF as the 3D implicit representation, our
method can effectively mitigate these artifacts by leveraging
complementary information obtained through correspondences
across different views. Additionally, our PatchGAN, which
operates on the UV map, further enhances appearance consis-
tency. As illustrated in Fig. 12 (c), the results of our method
successfully rectify the visual artifacts present in the pseudo
ground truths.

F. User Study

For the subjective evaluation of the results, we conduct a
user study. We prepare makeup transfer results of 20 images
and 10 videos and compare our results with five state-of-art
methods [3], [5], [12], [19], [59]. 30 participants are asked to
rank the results from best to worst in terms of realism, faith-
fulness, and overall quality. The user study result is reported
in Tab. III, where our method has shown apparent advantages,
especially for the results of videos. It should be noted that
the realism of the video results also evaluates the consistency,
as inconsistency will affect the realism. Please refer to our
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Fig. 8. More makeup transfer examples.

Fig. 9. Generalizability for various poses and expressions. The first row shows
the training images with the nearest poses to the makeup transfer results in
the bottom two rows.

supplementary file for more results and information of our
user study.
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TABLE III
BOX PLOTS OF THE AVERAGE REALISM, FAITHFULNESS AND OVERALL

QUALITY PERCEPTION SCORES FOR EACH OF THE COMPARED
APPROACHES.

G. Limitations

We show some failure cases in Fig. 13. First, our method
may fail to transfer some high-frequency makeup details. As
shown in the first row, the white spots on both sides of the face
in the reference image are neglected. The reason lies in the
trade-off made by the NeRF while ensuring consistency across
all the training frames. This can be mitigated by blending the

Fig. 10. Ablation study on the losses. (a-c) show the results of the model
trained with the RGB loss on the pseudo ground truth (RGB loss), hybrid
makeup loss (HM loss), and the combination of PatchGAN loss and HM
loss, respectively. (d) uses all the proposed losses.

Fig. 11. Ablation study on our patch-based discriminator. We perform
discrimination on patches from the pseudo ground truth (on Pseudo GT) and
the original reference image (on Reference). The UV-map-based discriminator
(on UV map) provides the best performance.

warped results and our transfer results with delicate pattern
masks. Second, as in the bottom row, our method may generate
false highlights when the lighting conditions are significantly
different, e.g. darker environment. Our method assumes that
the different shades on a makeup face come from the use of
cosmetics of different color and brightness, so that the shades
are transferred as part of makeup effects. It can be resolved
by incorporating user interaction to specify where to apply
makeup. Last, due to the inability of our NeRF framework
to render in real time, our method is unable to achieve real-
time makeup transfer. Also, the training takes several hours.
However, these can be solved by incorporating current NeRF
acceleration technologies, such as iNGP [27].

V. CONCLUSIONS

We propose a novel framework based on dynamic neural
radiance fields for consistently transferring makeup styles to
facial images with any facial pose and expression. Our method
maintains the geometry and appearance consistency among
all the synthesized facial images with dramatically different
poses and expressions. In our two-stage training scheme, we
first obtain the implicit 3D geometry representation and then
apply reference makeup styles through a makeup module.
Specifically, to ensure the quality and consistency of the syn-
thesized results, a novel hybrid makeup loss that considers the
characteristics of the makeup applied on different facial parts,
and a UV-map-based patch discriminator that works in the
pose-independent space are proposed. Extensive experiments
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Fig. 12. Comparison with pseudo ground truth. Although there are artifacts
on the pseudo ground truth, our method can eliminate them with the help of
the complementary information learned from different views and the patch
discriminator on the UV map.

Fig. 13. Failure cases.

and a user study demonstrate the superiority of our method,
which achieves the best performance of visual quality and
consistency in transferring makeup to multiple facial images
with different poses and expressions.
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