
NeRF-Editing: Geometry Editing of Neural Radiance Fields
Supplementary Material

Yu-Jie Yuan 1,2,† Yang-Tian Sun 1,2,† Yu-Kun Lai 3

Yuewen Ma 4 Rongfei Jia 4 Lin Gao 1,2*

1Beijing Key Laboratory of Mobile Computing and Pervasive Device,
Institute of Computing Technology, Chinese Academy of Sciences

2School of Computer and Control Engineering, University of Chinese Academy of Sciences
3School of Computer Science & Informatics, Cardiff University 4Alibaba Group

{yuanyujie, sunyangtian, gaolin}@ict.ac.cn LaiY4@cardiff.ac.uk

{yuewen.my, rongfei.jrf}@alibaba-inc.com

1. Overview
This supplementary document provides the implementa-

tion details and more results that accompany the paper. It
contains four parts, including implementation details, inter-
mediate results, more editing results, and an example result
of deformation transfer.

• Section 2 provides some key derivations of the algo-
rithm, the details of self-captured datasets and training
details.

• Section 3 provides more editing results on both syn-
thetic and real captured datasets.

• Section 4 provides the intermediate results in the edit-
ing process, including visualization of the triangular
meshes and tetrahedral meshes.

• Section 5 provides an example result of the deforma-
tion transfer between a video clip and a head sculpture.

2. Implementation Details
In this section, we will go over some implementa-

tion details, including the derivation of ARAP (as-rigid-
as-possible) deformation of a tetrahedral mesh under the
constraints of a deformed triangular mesh, calculation of
barycentric coordinates for sampled points, self-captured
dataset details and training details.

2.1. Derivation of As-Rigid-As-Possible (ARAP) De-
formation of Tetrahedral Mesh

Firstly, we explain how a tetrahedral mesh is deformed
under the constraints of a triangular mesh. Following the

†: Authors contributed equally
*Corresponding Author is Lin Gao (gaolin@ict.ac.cn)

main paper, the deformed triangular mesh is denoted as S′

with vertex positions v′i. The tetrahedral mesh before and
after deformation are denoted as T and T ′ with vertex po-
sitions tk and t′k respectively. The deformation of the tetra-
hedral mesh is formulated as follows:

minE(T ′) =

m∑
k=1

w̃i
∑

j∈N(k)

wkj‖(t′k − t′j)−Rk(tk − tj)‖
2
,

subject toAt′ = v′,
(1)

where Rk is the local rotation at vertex k, N(k) is the set
of adjacent vertices of vertex k, m is the total number of
tetrahedral vertices, wkj is the cotangent weight, A is the
barycentric weight matrix. w̃i is the cell weight which is
set to 1 following [6]. This quadratic optimization problem
with linear constraints can be converted into linear equa-
tions using the Lagrangian multiplier method. By introduc-
ing several new variables λi, the constrained optimization
problem in Eq. 1 can be converted into an unconstrained
minimization problem:

minG(T ′) =

m∑
k=1

∑
j∈N(k)

wkj‖(t′k − t′j)−Rk(tk − tj)‖
2
,

+

n∑
i=1

λi(Ait
′ − v′i),

(2)

whereAi is the i-th row of the matrixA, and vi is the same
as defined before. The minimization problem can be effi-
ciently solved by alternately optimizing local rotations Rk

and deformed positions t′k. The solution of local rotations
Rk is the same as the original ARAP [6]. Here, we focus
on how to solve the deformed positions t′k supposing that

1



the local rotations Rk is known. We consider the partial
derivative of G(T ′) w.r.t. t′k:

∂G(T ′)

∂t′k
=

∑
j∈N(k)

4wkj((t
′
k − t′j)−

1

2
(Rk +Rj)(tk − tj))

+

L∑
l=1

λlal,

(3)

where al is the non-zero coefficient corresponding to tk in
A, and L is the total number of the non-zero coefficients
corresponding to tk. And then we consider ∂G(T ′)

∂t′k
= 0,

which can lead us to the following sparse linear system of
equations:

∑
j∈N(k)

wkj(t
′
k − t′j) +

L∑
l=1

λlal
4

=
∑

j∈N(k)

wkj
2

(Rk +Rj)(tk − tj).
(4)

We also need to consider ∂G(T ′)
∂λi

= 0, which gives us the
constraints in Eq. 1. Then the whole system of equations
can be compactly written as

Mx = b, (5)

whereM is composed of the discrete Laplace-Beltrami op-
erator and the barycentric coordinates, x is composed of the
deformed positions t′ and the newly-introduced variablesλ,
and b is a vector composed of the right-hand side expres-
sion from Eq. 5 and the triangular mesh vertex positions v′.
The linear system can be solved by some common methods,
such as the Newton’s method.

2.2. Calculation of Barycentric Coordinates

In this section, we discuss how to quickly calculate the
barycentric coordinates of sampled points in a tetrahedron.
Consider a single tetrahedron with vertices Vi(xi, yi, zi)
(i = 1, 2, 3, 4), and the query sampled point q(x, y, z), the
barycentric coordinates of q can be calculated as:

bci = Deti/Det0, (6)

where

Det0 =

∣∣∣∣∣∣∣∣
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ , (7)

and Deti can be obtained by replacing the i-th row of Det0
with coordinates of the query point, e.g.

Det1 =

∣∣∣∣∣∣∣∣
x y z 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

∣∣∣∣∣∣∣∣ (8)

The query point q lies in the tetrahedron if and only if 0 <
bci < 1, i ∈ {1, 2, 3, 4}.

There are about 32 million query points and thousands
of tetrahedrons to render a 400×400 image, which is time-
consuming. Therefore, we simplify the query process by
only considering the tetrahedrons containing vertices near
the query point. Note that different vertices are shared
by different numbers of tetrahedrons. In order to calcu-
late them efficiently in a consistent matrix formulation, we
fill extra tetrahedrons as placeholders to make the dimen-
sion consistent between different query points, explained in
Alg. 1.

Algorithm 1 Determine the tetrahedron for query point
Input

cage vertices V : [NV,3] vertex position
cage tetrahedrons T : [NT,4] vertex index
query point q: [1,3] point position
(NV: #. vertices; NT: #. tetrahedrons)

Preprocess:
1: Determine the max degree of tetrahedron vertices, de-

noted as D.
2: Construct a map V 2T : [NV,D] from vertex index to a

tetrahedron index list, which contains the vertex. The
list is filled to length D with -1.

Calculation:
1: Find the K nearest vertices N(q) for q
2: Extract D tetrahedrons with V 2T for each v ∈ N(q)
3: Iterate the the D*K tetrahedrons to determine the tetra-

hedral q belongs to.
4: Return the tetrahedron index and corresponding

barycentric coordinates according to Eq. 6. If none of
them contains q, returns index -1 and barycentric coor-
dinates [0,0,0,0].

2.3. Self-Captured Datasets

In order to demonstrate the capability of our method, we
captured several real-world scenes. For each scene, we took
2-3 circles around the center object and selected a certain
number of images to train the NeRF network. The num-
ber of training images for each scene is around 150∼200.
They are sampled uniformly, i.e. one out of every three due
to high video fps. In addition, we use an extra image for
validation in each scene.



2.4. Training & Inference Details

Our approach does not require additional manipulation
during the training phase. We train the neural radiance
field network following the NeRF [4] configuration, which
costs 10∼12h on an Nvidia 2080Ti GPU. During the infer-
ence stage, this approach needs to determine the tetrahedron
where the sampling point is located and its barycentric co-
ordinates. The rendering time of a 400×400 image is in the
interval of 40∼50s, up and down depending on the number
of tetrahedrons in the tetrahedral cage. We adopt the train-
ing strategy of NeRF++ [9], which divides the space into the
object centric near view and the far view. The reconstructed
mesh will only contain the near view, which is then simply
scissored to obtain the stand-alone target object. During the
editing, the user only needs to specify some control points
and then drag the control points or specify new coordinates
for the control points to deform the triangular mesh. The
efforts the user should take to edit the mesh is the same as
ARAP [6].

3. Additional Editing Results

In this section, we show more editing results on both
synthetic data and real captured scenes, as illustrated in
Figs. 1-3 respectively. For synthetic data, we use “toad”
from NSVF [3] and two characters from mixamo [2]. The
“toad” can be edited from a static posture to a jumping
posture. The two articulated characters illustrate that our
method can also be applied to the NeRF of articulated ob-
jects, especially human bodies. For real captured scenes,
except for the horse statue from FVS dataset [5] and the
teddy bear from BlendedMVS [8], the rest are captured by
ourselves. It can be seen that we can change the posture
of the object. For example, two snakes turn offensive, the
horse statue can change into a leap posture, and the bear
raises its hand. We can also edit NeRF of other man-made
objects. For example, we can bend a Roman stone column
into an arch, enlarge the wooden cabinet, and distort the
sports equipment.

4. Intermediate Results

To illustrate that our NeRF editing approach is faithful to
the user’s editing, we visualize the intermediate results, in-
cluding the triangular mesh before editing and after editing
and the corresponding tetrahedral meshes. The visualiza-
tion results are shown in Fig. 4.

We further show the edited triangular mesh and tetra-
hedral mesh in the ablation study of “Necessity of edit on
triangular mesh” in Fig. 6.

5. Application: Deformation transfer results
As mentioned in the main paper, we can also adopt defor-

mation transfer methods in our approach in addition to in-
teractive user editing. Here we show an example where we
can transfer the movements of a human face from a video
clip to a head sculpture, as shown in Fig. 5. Specifically, we
first use DECA [1] to reconstruct the mesh sequence of the
face from the input video, then use the deformation transfer
method [7] to transfer the movements of the mesh sequence
to the extracted mesh from the sculpture NeRF network, and
further use our method to generate image synthesis results.
It can be seen that the sculpture in the results can well re-
produce the movements of the human face.



View1 View2 View3 View4

Before

After

Before

After

Before

After

Figure 1. We show the editing results (row “After”) compared with NeRF rendering results (row “Before”) on synthetic data under different
views. Different columns show different views.



References
[1] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.

Learning an animatable detailed 3D face model from in-the-
wild images. ACM Transactions on Graphics (TOG), 40(4):1–
13, 2021. 3

[2] Adobe Inc. Mixamo. https://www.mixamo.com. 3
[3] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. Advances in
Neural Information Processing Systems, 33, 2020. 3

[4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 3

[5] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
European Conference on Computer Vision, pages 623–640.
Springer, 2020. 3

[6] Olga Sorkine-Hornung and Marc Alexa. As-rigid-as-possible
surface modeling. In Symposium on Geometry Processing,
2007. 1, 3

[7] Robert W Sumner and Jovan Popović. Deformation transfer
for triangle meshes. ACM Transactions on Graphics (TOG),
23(3):399–405, 2004. 3

[8] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. BlendedMVS: A large-
scale dataset for generalized multi-view stereo networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2020. 3

[9] K. Zhang, G. Riegler, Noah Snavely, and V. Koltun. NeRF++:
Analyzing and improving neural radiance fields. ArXiv,
abs/2010.07492, 2020. 3

https://www.mixamo.com


View1 View2 View3 View4

Before

After

Before

After

Before

After

Before

After

Figure 2. Results of our NeRF editing (row “After”) compared with original NeRF results (row “Before”) on the captured data. Different
columns show different views. We edit the static neural radiance fields and exhibit the deformed results under different views.



View1 View2 View3 View4

Before

After

Before

After

Before

After

Before

After

Figure 3. Results of our NeRF editing (row “After”) compared with original NeRF results (row “Before”) on the captured data. Different
columns show different views. We edit the static neural radiance fields and exhibit the deformed results under different views.



Original mesh S Edited mesh S′ Original cage T Edited cage T ′ NeRF Edit

Figure 4. Visualizations of the intermediate results which illustrate that our NeRF editing approach is faithful to the user’s editing.

Figure 5. We show an application of our method. Given a video clip, we can adjust the sculpture’s head to align with the given video
frames with deformation transfer.



GT Tetrahedral Triangular

Figure 6. Ablation study of editing on the tetrahedral mesh or tri-
angular mesh. It can be seen that editing on the tetrahedral mesh
will bring in artifacts in rendered results. We also show the inter-
mediate results, including the edited triangular mesh and tetrahe-
dral mesh.


	. Overview
	. Implementation Details
	. Derivation of As-Rigid-As-Possible (ARAP) Deformation of Tetrahedral Mesh
	. Calculation of Barycentric Coordinates
	. Self-Captured Datasets
	. Training & Inference Details

	. Additional Editing Results
	. Intermediate Results
	. Application: Deformation transfer results

